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Abstract. We discuss a two-parametric solution of the graded Yang-Baxter equation 
(=E) and perform the Yang-Baxterization to obtain the solution lo quantum m. In 
the formalism developed in [1-4], we give the two-parametric quantized superalgebra 
UuGgl(l[l) and prove that this algebra is a Hopf algebra with the Hopf operations 
explicitly provided. 

1. Introduction 

Quantum groups and trigonometric quantum Yang-Baxter equations [1-8] are found 
to be closely related with the physical theories of integrable models, inverse scattering 
method for nonlinear evolution equation, factorizable S-matrix and integrable field 
theory, conformal field theories and topological field theory and Chern-Simons 
theory. On the one hand, this mathematical theory has also been generalized to 
include the supersymmetric case [6] ,  and on the other, there is currently much interest 
in the generalizations of multi-parametric solutions of Yang-Baxter equations [9-121 
and multi-parametric deformation of the Lie algebras [9-12]. In this paper, we will 
concentrate on the multi-parametric solution of graded YBE and multi-parametric 
deformation of graded Lie algebras [7,8]. 

To set up notations, we recall some well known facis. The quantum Yang-Baxter 
equation [13] reads 

R1Z(X)f&(XP)RU(P) = R , ~ ( P ) R , ~ ( X P ) R ~ ? ( X )  (1) 

where Rij  (z)  E End,( V @ V @ V )  is a matrix acting on the ith and j t h  spaces non- 
trivially and trivially on the third one, with x E C the spectral parameter. The YBE 
takes different forms in literature, and besides the form in (I), we have equivalently 

filZ(x)RZ3(xP) fi12(fl) = h 3 ( P )  h 2 (  X/L) RZ3( (2) 

where it should be noted that k( z) = PR( z) and P denotes the permutation matrix 
in V @  V .  The second form of YBE is valid to the supersymmetric case, while the first 
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one will have to be modified when we deal with graded (Lie or quantum) algebras 
[6] (we will cnme to this point again later). 

Let Sj E End( VBn-') be given by 

(3) s. = I ( ' )  @ I(*) 8. .  . @  ~ ( i - l )  @ fi@ I(itf') @ ., , @ ~ ( n - 1 )  

where k is spectrum-independent solution of (2); then each of such solutions leads 
to an n-dimensional braid-group representation (BGR), i.e. 

f 

As various solutions of BGRS are easily found, the theory of Yang-Baxterization is 
often applied to obtain the solutions of quantum (or spectrum-dependent) YBE. The 
BGRS are usually obtained from the trigonometric or hyperbolic solutions of YBE by 
setting the spectral parameter to infinity. The standard method in obtaining BGR 
from the universal R-matrix for the q-deformation of Lie algebras gives a series of 
BGRS called standard, which revert to the permutation matrix when the deformation 
parameter q - 1. Other types of solutions of YBE are usually called non-standard 
ones [ 14,201. 

According to [19], the solutions of YBE (2), which revert to the superpermutation 
matrix when q - 1 are nothing but the solutions that correspond to the graded 
algebras. For space V @ V with V being ZD linear space, the superpermutation 
matrix reads 

r l  1 

The YBE in (1) should be modified to the following form: 

(%ZR12) (%3R13) (%3&3) = (%3%3) (q13R13) ('71ZR12) (6) 

to be valid to the supersymmetric case, where v = diag(l , l , l , -1) is a super 
phase factor, while (2) remains correct. Therefore although in [17] ten solutions are 
obtained for (I), some of which are non-standard ones, super-solutions are obviously 
not included. 

In section 2, we will supply a multi-parametric solution of BGR, and perform the 
Baxterization to obtain a solution to the graded quantum YBE. A general method of 
inserting the spectral parameter into the graded R-matrix is suggested. In section 3, 
we give the multi-parametric graded quantum super algebra U~egL(lll), and the 
graded quantum Yang-Baxter equation, and though the main results in this section 
are included in I7.811, we go further to show that this algebra is a Hopf algebra with 
provided Hopf operations:. 

t We thank the referee for pointing out this fact. 
t We realized this point after the referee's importan1 suggestion. 
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2. A solution to graded YBE and Baxterization 

It can be easily verified that the following is a solution to the YBE (2) or (6): 

This solution is apparently three-parameterdependent. but one of them can be 
eliminated by a proper rescaling. Therefore 

~ = ~ E , , @ E E , ~ + u E ~ ~ @ E ~ ~ + v E ~ ~ @ E ~ ~ +  q - -  Ei,@E?2--EZ@E2Z 
11" 

P 
(8) 

( 3 
where EaB are 2 x 2 matrices and 

(Eag)ij  = 6oi6Bj . (9) 

Following the procedure of Baxterization, we can put a spectral parameter into 
the above matrix such that it becomes a solution of the quantum YBE. We can always 
diagonalize S and rewrite it as 

i=l 

where A, = q and A, = -uv/q are distinct eigenvalues of k, i.e. 

( k - q ) ( R + . = )  = o  

and Pi are projectors such that 

P;P. J = Sij Pj and $ P i = I .  
i=l 

The trigonometric solution of the quantum YBE (2) satisfies 
2 

where the unknown factors can actually be given by the following formulas: 

p , ( z ) =  (z+?) and p , ( z ) = ( l + z ? )  

where A, and A, are permutations of the eigenvalues A ,  and A2, if we require that 
the quantum solution satisfies boundary, initial and unitarity conditions as follows: 

.T-0 lim R(z) = cs R(I) = const x I &+)R(+- ' )  = p ( z ) ~ .  (15) 
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The formula in (14) is actually the same as that developed in [3] and [14] for standard 
solutions, and we expect it to be true in more general cases [15] where the number 
of eigenvalues is n 2 2, i.e. 

where 

p i  ( x )  = (1 + +) (1 + +) . . . (1 + 2) (x + *) . , . ( 2  + 2) . 
(17) 

The present case is the easiest, in that there are only two eigenvalues. The final 
result reads 

This solution can be further generalized to insert more parameters, 

1 x q  - x - ' u v / q  
x - k ( q  - u v / q )  u ' - ~ w z ( x  - x-1) 

Uc'Zfl-cz(x - x - ' )  x y q  - u u / q )  
x-'q - x u v / q  

(19) 
[ R( x )  = 

where q ,  U and U are deformation parameters, x is spectral parameter, and k is 
gauge banformation constant [16], while c1 and c2 appear as the pure effect of multi- 
parametric deformation. When k = 1 and c1 = c2 = 0, we arrive at the solution (18) 
obtained by standard Baxterization. 

3. Wo-parametric graded quantum algebra U&(lll) 

Employing the method developed by Faddeev, Reshetikhin, Takhtajan, Kulish and 
Sklyanin and others [1-4], one can obtain from a solution Of YBE the quantum algebra, 
equipped automatically with Hopf operations. This method can be generalized to the 
supersymmetric w e  [18,19]. 

As was mentioned in section 1, the graded YBE is (6), and the Yang-Baxter 
algebra (YBA) is rewritten 

where 

T l = T @ I  T 2 = I @ T .  (21) 
The co-associativity of the triple product of TI, q12T2q12 and qZqI3T3ql3qB in space 
V 8 V 8 V yields the YBE (6). The dual algebra relation is 
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where F or E' takes + or -. The co-associativity condition also guarantees the pairing 
condition of the dual YBAS, i.e. 

(Llf),T,) = R(*) 12 (23) 

and 

(24) - 
12 - 1712RZl~I2 RI;' = R i l  

and the matrix R has already been assumed non-singular. The dual algebra relation 
(22) can be rewritten 

where we have applied the following relations: 

Vab = qbo qabqcd = l?cdvab qacqbsRab = Rab%cqbc ' (26) 

The first two equations above are identities about the super phase factors, and the 
third one is the super version of the weight conservation [19]. 

Now we are in the position to consider the R-matrix of the specific form in (7) 
and write L(*) as upper and lower triangular matrices as follows: 

From (25) we have the algebraic relations for the algebra spanned by the elements 
I, y,  kf I l', 

lEklcf' = kL'lc ( E  E' = +,-) k'xk- = qv-'x 

(28) I+x[- = q-lvx k t y k -  = q-' uy P y l -  = p - ' y  

and ktk- = k-k' and 1+1- = 1-It are in the centre of the algebra (denoted 
uxvgWl)), i.e. 

[k*kr, e ]  = O  [1*1+,  * ]  = O  v E u,&7I(lll). (29) 

k- = (k)-' k t  = k l=(l)-' Et = 1  (30) 

The relations in (29) allow one to set 

and therefore Uuvgl(l/ l)  = span{l ,k, l ,x ,y} .  When u / v  - 1, the single- 
parametric deformed quantum algebra U,gl(ljl) is recovered, and if we further 
set q + 1 then the Lie universal enveloping superalgebra Ugl(ll1) is recovered. 

The co-product of this algebra can be determined by 
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where 6 denotes the tensor product combined with the usual matrix multiplication 
A (k*) = le* @ k* 

A (I) = z @ IC+ I-' @ 2 

A (1* )  = l* @ I *  
(32) 

A (y) = y @  1 + IC-'@ y 

which is an operation of algebra homomorphism, i.e. Va,6 E Uuugl(lll),  A ( a 6 )  = 
A(a)A(b) .  We can also give another homomorphism, co-unit denoted E ,  and an 
antihomomorphism, antipodal mapping denoted S, as follows: 

C ( 2 )  = E(y)= 0 
S ( 2 )  = -12k-1 
s (IC) = IC-' 

€ ( I C ) =  c ( l )=  I 
S(y) = - leyr '  

s (1) = I-'  
(33) 

where the antihomomorphism of the operation of antipodal mapping means that 
for any a,6 E U~vgl(l~l), S(a6) = -S(b)S(a). Note that a minus sign appears 
because of the super nature of this algebra, which makes it differ with the well 
known quantum algebras. The consistency of abovedefined operations with the 
algebraic relations can be easily checked. Therefore the two-parametric deformed 
algebra is a Hopf algebra, by definition. It has been well !mown that the two- 
parametric quantized algebra of 4 2 )  is not a Hopf algebralg], in that it does not 
have consistent definitions of co-unit and antipodal mapping. However, the newly 
defined two-parametric deformation of gl(111) is a Hopf algebra, and this may be 
interesting. 

To end this paper, we want to give the quantum version of the Yang-Baxter 
relation (q 

where 

and 

f i 1 2 ( W 1 )  ( ~ l Z ~ 1 ( ~ ) 7 ? l Z )  L d P )  = ('llZL,(P)1)12) Lz(X)&XP-I)12 (34) 

Ll(X) = U X )  @ 1 = 1 @ U P )  (35) 

Xlc - X-'lc-' ( 4 -  U [ ( 4  - uv /p )2  X I - '  - A-'1 L ( X )  = 

Q - uv/4 
w(X - A- ' )  

which can be obtained from (19) by setting k = c1 = c2 = 0. This quantized form 
may be useful if one is concerned with relating this solution of the Yang-Baxter 
equation and possibly the newly defied Hopf algebra with a quantum spin model 
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