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Absiract. We discuss a two-parametric solution of the graded Yang-Baxter equation
(vBe) and perform the Yang-Baxierization to obtain the solution to quantum YBE. In
the formalism developed in [1-4], we give the two-parametric quantized superalgebra
Uuvgl(1]1} and prove that this algebra is a Hopf algebra with the Hopf operations
explicitly provided.

1. Introduction

Quantum groups and trigonometric quantum Yang-Baxter equations [1-8] are found
to be closely related with the physical theories of integrable models, inverse scattering
method for nonlinear evolution equation, factorizable S-matrix and integrable field
theory, conformal field theories and topological field theory and Chern-Simons
theory. On the one hand, this mathematical theory has also been generalized to
include the supersymmetric case [6], and on the other, there is currently much interest
in the generalizations of multi-parametric solutions of Yang-Baxter equations [9-12]
and multi-parametric deformation of the Lie algebras [9-12]. In this paper, we will
concentrate on the multi-parametric solution of graded YBE and multi-parametric
deformation of graded Lie algebras [7,8].

To set up notations, we recall some well known facts. The quantum Yang—Baxter
equation [13] reads

Ryp( M) Byp(Ap) Ryg() = Ryg(p) Ryg(Ap) Bpp(A) 4y

where R, (z) € Ende(V ® V ® V) is a matrix acting on the 7th and jth spaces non-
trivially and trivially on the third one, with & € C the spectral parameter. The YBE
takes different forms in literature, and besides the form in (1), we have equivalently

BN Byu(Op) Ryp(1) = Ryg(1) R ) Bog(N) 2

where it should be noted that B{z)} = PR(x) and P denotes the permutation matrix
in V@ V. The second form of YBE is valid to the supersymmetric case, while the first
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one will have to be modified when we deal with graded (Lie or quantum) algebras
[6] (we will come to this point again later).
Let S; € End(V ") be given by

Sj =D g @ --9Il-VgRe it g ... ® Itn-1) 3)

where R is spectrum-independent solution of (2); then each of such solutions leads
10 an n-dimensional braid-group representation (BGR), i.e.
8:8;415: = 8415504

o (4)
;‘5’.“5’_1,:;5'}5't for [z—;l}Z

As various solutions of BGRs are easily found, the theory of Yang—Baxterization is
often applied to obtain the solutions of quantum (or spectrum-dependent) YBE. The
BGRs are usually obtained from the trigonometric or hyperbolic solutions of YBE by
setting the spectral parameter to infinity. The standard method in obtaining BGR
from the universal R-matrix for the g-deformation of Lie algebras gives a series of
BGRs called standard, which revert to the permutation matrix when the deformation
parameter ¢ — 1. Other types of solutions of YBE are usually called non-standard
ones [14,20].

According to {19], the solutions of YBE (2}, which revert to the superpermutation
matrix when ¢ — 1 are nothing but the solutions that correspond to the graded
algebras. For space V @ V' with V' being 2D linear space, the superpermutation
matrix reads

Pe=nPp= ©)

— O
L=

-1
The YBE in (1) should be modified to the following form:

(M2 Ry2) (m3 Byz) (M Rs) = (s Ras) (13 Ryz) (2 Ryp) ®

to be valid to the supersymmetric case, where n = diag(1,1,1,-1) is a super
phase factor, while (2) remains correct. Therefore although in [17] ten solutions are
obtained for (1), some of which are non-standard ones, super-solutions are obviously
not included.

In section 2, we will supply a multi-parametric solution of BGR, and perform the
Baxterization to obtain a solution to the graded quantum YBE. A general method of
inserting the spectral parameter into the graded R-matrix is suggested. In section 3,
we give the multi-parametric graded quantum super algebra U, g!/(1]1), and the
graded quantum Yang-Baxter equation, and though the main results in this section
are included in [7, 8]1, we go further to show that this algebra is a Hopf algebra with
provided Hopf operations}.

t We thank the referee for pointing out this fact.
1 We realized this point after the referee’s important suggestion.
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2. A solution to graded YBE and Baxterization

It can be easily verified that the following is a solution to the YBE (2) or (6):
q

0 u
R= v g—uv/q ' 0

—uv/fq

This solution is apparently three-parameter-dependent, but one of them can be
eliminated by a proper rescaling. Therefore

R=qE;®E;+uEy®Ep+vE;®Ey+ (q - %) Ey @ Ep— u_:“Ezz@ Ey
(8)

where E,; are 2 x 2 matrices and
(Eap)i; = baifp; - ©

Following the procedure of Baxterization, we can put a spectral parameter into
the above matrix such that it becomes a solution of the quantum YBE. We can always
diagonalize S and rewrite it as

R= i AP (1%
i=1
where A; = ¢ and A, = ~uv/q are distinct eigenvalues of R, ie.
(R—q)(é+%)=0 (11)
and P, are projectors such that

PP, =6, P, and Y pP=1I. (12)

i
The trigonometric solution of the quantum YBE (2) satisfies
. 2
Rlz) =3 pi(z)P, (13)
i=1
where the unknown factors can actually be given by the following formulas:
}‘1 )\1
prlz) = &+ + and pr(z) = {1+ 2+ (14)
2 2

where A; and A, are permutations of the eigenvalues A and A,, if we require that
the quantum solution satisfies boundary, initial and unitarity conditions as follows:

E&R(m) =S R(1) = const x I R(x)R(z™") = p(2)]. (15)
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The formula in (14) is actually the same as that developed in [3] and [14] for standard
solutions, and we expect it to be true in more general cases [15] where the number
of eigenvalues is n 2> 2, ie.

B(z) = i;lp;(m)a (16)
where )
o= (oo (o) - (3 (i) (o4 32).
(1)

The present case is the easiest, in that there are only two eigenvalues. The final
result reads

reg — - luv/g

2 g—uv r—z !
R(z)= (a:(q—a:‘l){)q} %q—':v/)ql; @
] z~'qg - zuv/q

This solution can be further generalized to insert more parameters,

-mq_m—luv/q K /o) 1 ( 1}
2} = =g —uvfg)  uwTuH(z —a”
R(I’) = 5z vl—cz(;c — 3;"1) .'L‘k(q - ‘UU/Q)
] r=lg — zuv/g
(19)

where ¢, v and v are deformation parameters, x is spectral parameter, and k is
gauge tranformation constant [16], while ¢, and ¢, appear as the pure effect of multi-
parametric deformation. When & = 1 and ¢; = ¢; = 0, we arrive at the solution (18)
obtained by standard Baxterization,

3. Fwo-parametric graded quantum algebra U, gl(1|1)

Employing the method developed by Faddeev, Reshetikhin, Takhtajan, Kulish and
Sklyanin and others [1-4], one can obtain from a solution of YBE the quantum algebra,
equipped automatically with Hopf operations. This method can be generalized to the
supersymmetric case [18, 19].

As was mentioned in section 1, the graded YBE is (6), and the Yang-Baxter
algebra (vBA) is rewritten

BTy (maTympz) = (e o) Ty Ry (20)

where
TI=TglI T,=I8T. (21)

The co-associativity of the triple product of T3, ny,Tomy, and nyn3 T3m27s in space
V ® V ® V yields the YBE (6). The dual algebra relation is

RZIL(IE) (nzzL(ze )7?12) = (’?12]-'*{2E }7?12) LEE}RH (22)
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where € or €' takes + or —. The co-associativity condition also guarantees the pairing
condition of the dual YBAs, ie.

(L), T) = R (23)
and
R(l-zl-) = MRy My REE ) = szl (24)

and the matrix R has already been assumed non-singular. The dual algebra relation
(22) can be rewritten

Ry (??1211(16)7712) L§) = (7?12556 )Thz) Ly Ry (25)
where we have applied the following relations:

Nab = Mha NabNed = NedTas NacheBap = RapMaeMe - (26)

The first two equations above are identities about the super phase factors, and the
third one is the super version of the weight conservation [19].

Now we are in the position to consider the R-matrix of the specific form in (7)
and write L(*) as upper and lower triangular matrices as follows:

L) = {ko- (a- 1;3/9)93] L) = [(q_ i;/q)y ﬁ] e

From (25) we have the algebraic relations for the algebra spanned by the elements
Ty, k15

1% = k€I (e =+,-) ktek™ = qu-le

el =g oz ktyk™ = g luy tylm = quTly (28)
A
2 2
ri=y"=0 uyzr + vey = ————————
v Y Y= T u/q

and k*tk- = k~k* and ITI~ = 171" are in the centre of the algebra (denoted
U,,ql(1]1)), ie.

[k%kF, ¢ ] =0 [(KF, o] =0 Ve & U,gl(lil). (29)
The relations in (29) allow one to set

k™ = (k)"! Et=k =)t It =1 (30)
and therefore U, _,g/{(1]1) = span{l,k.l,z,y}. When u/v — 1, the single-
parametric deformed quantum algebra U, gl(1j1) is recovered, and if we further

set ¢ — 1 then the Lie universal enveloping superalgebra Ugl(1|1} is recovered.
The co-product of this algebra can be determined by

A(LEN) = [#) @ L) (31)
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where @ denotes the tensor product combined with the usual matrix multiplication
A (k%) = kT @ k* A(E)=1*gi*
(32)
Az)=z2@k+l '@z A@@=vel+k oy

which is an operation of algebra homomorphism, ie. Va,b € U, gl(1]1), A(ab) =
A(a)A(b). We can also give another homomorphism, co-unit denoted e, and an
antihomomorphism, antipodal mapping denoted S, as follows:

e@=e(=0 e)=e)=1
S (z) = —lzk™? S(y) = —kyl™! (33)
S{k)= k! sSy=1-1!

where the antihomomorphism of the operation of antipodal mapping means that
for any a,b € U, ,gi(1|1), S(eb) = —S5(b)S(a). Note that a minus sign appears
because of the super nature of this algebra, which makes it differ with the well
known quantum algebras. The consistency of above-defined operations with the
algebraic relations can be easily checked. Therefore the two-parametric deformed
algebra is a Hopf algebra, by definition. It has been well known that the two-
parametric quantized algebra of s(2) is not 2 Hopf algebra[9}, in that it does not
have consistent definitions of co-unit and antipodal mapping. However, the newly
defined two-parametric deformation of ¢l(1]1) is a Hopf algebra, and this may be
interesting,

To end this paper, we waat to give the quantum version of the Yang-Baxter
relation (25)

Rp(Ae ) (i Ly( M mz) Ly( ) = (g Ly()ma) La( MY R~ )y, (34)
where

Li(x)=L(A) el Ly(p)=1@ L(p) (35)
and

_ {2k -2k (g—uv/
Ly = [(q— uv/q)x )?l‘ltiLAg)‘?

Ag—2luv/g . (36)
— g—uvfqg u(A-A"%)
Rn(2) = w(A- 1) g-uv/g
Alg— duv/q
which can be obtained from (19) by setting & = ¢; = ¢, = 0. This quantized form
may be useful if one is concerned with relating this solution of the Yang-Baxter
equation and possibly the newly defined Hopf algebra with a quantum spin model.
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